Skip to content

Main Navigation

Puget Systems Logo
  • Solutions
    • Recommended Systems For:
    • Content Creation
      • Photo Editing
        • Recommended Systems For:
        • Adobe Lightroom Classic
        • Adobe Photoshop
        • Stable Diffusion
      • Video Editing
        • Recommended Systems For:
        • Adobe After Effects
        • Adobe Premiere Pro
        • DaVinci Resolve
        • Foundry Nuke
      • 3D Design & Animation
        • Recommended Systems For:
        • Autodesk 3ds Max
        • Autodesk Maya
        • Blender
        • Cinema 4D
        • Houdini
        • ZBrush
      • Real-Time Engines
        • Recommended Systems For:
        • Game Development
        • Unity
        • Unreal Engine
        • Virtual Production
      • Rendering
        • Recommended Systems For:
        • Keyshot
        • OctaneRender
        • Redshift
        • V-Ray
      • Digital Audio
        • Recommended Systems For:
        • Ableton Live
        • FL Studio
        • Pro Tools
    • Engineering
      • Architecture & CAD
        • Recommended Systems For:
        • Autodesk AutoCAD
        • Autodesk Inventor
        • Autodesk Revit
        • SOLIDWORKS
      • Visualization
        • Recommended Systems For:
        • Enscape
        • Lumion
        • Twinmotion
      • Photogrammetry & GIS
        • Recommended Systems For:
        • ArcGIS Pro
        • Agisoft Metashape
        • Pix4D
        • RealityCapture
    • AI & HPC
      • Recommended Systems For:
      • Data Science
      • Generative AI
      • Large Language Models
      • Machine Learning / AI Dev
      • Scientific Computing
    • More
      • Recommended Systems For:
      • Compact Size
      • Live Streaming
      • NVIDIA RTX Studio
      • Quiet Operation
      • Virtual Reality
    • Business & Enterprise
      We can empower your company
    • Government & Education
      Services tailored for your organization
  • Products
    • Computer System Styles:
    • Desktop Workstations
      • AMD Ryzen
        • Ryzen 9000:
        • Mini Tower
        • Mid Tower
        • Full Tower
      • AMD Threadripper
        • Threadripper 7000:
        • Mid Tower
        • Full Tower
        • Threadripper PRO 5000WX:
        • Full Tower
        • Threadripper PRO 7000WX:
        • Full Tower
      • AMD EPYC
        • EPYC 9004:
        • Full Tower
      • Intel Core
        • Core 13th Gen:
        • Small Form Factor
        • Core 14th Gen:
        • Mini Tower
        • Mid Tower
        • Full Tower
      • Intel Xeon
        • Xeon W-2400:
        • Mid Tower
        • Xeon W-3400:
        • Full Tower
    • Custom Computers
    • Laptop Workstations
      • Puget Mobile 17″
    • Rackstations
      • AMD Rackstations
        • Ryzen 7000:
        • R550-6U 5-Node
        • Ryzen 9000:
        • R121-4U
        • Threadripper 7000:
        • T121-4U
        • Threadripper PRO 5000WX:
        • WRX80 4U
        • Threadripper PRO 7000WX:
        • T141-4U
        • EPYC 9004:
        • E140-4U
      • Intel Rackstations
        • Core 14th Gen:
        • C131-4U
        • Xeon W-3400:
        • X141-4U
        • X141-5U
    • Custom Rackmount Workstations
    • Puget Servers
      • Puget Servers
        • AMD EPYC:
        • E200-1U
        • E140-2U
        • E280-4U
        • Intel Xeon:
        • X200-1U
    • Custom Servers
    • Storage Solutions
      • Network Attached Storage
        • QNAP NAS Recommendations
      • Puget Storage
        • Puget Storage:
        • 12-Bay 2U
        • 24-Bay 2U
        • 36-Bay 4U
    • Recommended Third Party Peripherals
      Curated list of accessories for your workstation
    • Puget Gear
      Quality apparel with Puget Systems branding
  • Publications
    • Articles
    • Blog Posts
    • Case Studies
    • HPC Blog
    • Podcasts
    • Press
    • PugetBench
  • Support
    • Contact Support
    • Support Articles
    • Warranty Details
    • Onsite Services
    • Unboxing
  • About Us
    • About Us
    • Contact Us
    • Our Customers
    • Enterprise
    • Gov & Edu
    • Press Kit
    • Testimonials
    • Careers
  • Talk to an Expert
  • My Account
  1. Home
  2. /
  3. Hardware Articles
  4. /
  5. Revit 2017.2 CPU Comparison

Revit 2017.2 CPU Comparison

Posted on June 7, 2017 by William George
Always look at the date when you read an article. Some of the content in this article is most likely out of date, as it was written on June 7, 2017. For newer information, see our more recent articles.

Table of Contents

  • Introduction
  • Test Setup
  • Benchmark Results
  • Hyperthreading
  • Conclusion

Introduction

A lot of our customers use software from Autodesk for various engineering disciplines, but aside from some basic specs and supported video card lists there is not much information available on what hardware actually performs best in these applications.

In this article we are going to look at several Intel CPU options that you might consider in an engineering workstation to see exactly how they compare in Revit 2017.2. We will also look briefly at the impact of Intel's Hyperthreading technology on Revit performance.

If you are interested in how well different hardware works with Autodesk Revit, don't miss our article on Quadro GPU performance.

Test Setup

To see how the different Intel CPUs perform in Revit 2017.2, we used the following configurations:

Testing Hardware
Motherboard: Asus PRIME Z270-A Asus X99 Deluxe II
CPU: Intel Core i7 7700K 4.2GHz
4 Core (4.5GHz Max Turbo)
Intel Core i7 6850K 3.6GHz
6 Core (3.7-4GHz Turbo)

Intel Core i7 6900K 3.2GHz
8 Core (3.5-4GHz)

Intel Core i7 6950X 3.0GHz
10 Core (3.4-4GHz Turbo)
RAM: 4x Crucial DDR4-2400 16GB
(64GB total)
4x Samsung DDR4-2400 32GB ECC Reg.
(128GB total)
GPU: NVIDIA Quadro P6000 24GB
Storage Drive: Samsung 960 Pro 1TB M.2 PCI-E x4 NVMe SSD
OS: Windows 10 Pro 64-bit
Software: Autodesk Revit 2017.2

These test configurations include four different CPU models across two different platforms. For modeling in general, we typically would recommend a high clock speed processor, with less emphasis on the number of cores, although we opted to include the 6-10 core models from Intel’s “enthusiast” platform. This provides two insights: first, we can see if there are any parts of the Revit workflow which will benefit from additional cores. Second, we can see how much of an impact the lower clock speed that accompanies high core count processors will have on performance.

A note about RAM: even though the two platforms we tested support different maximum memory configurations, that does not impact Revit performance. Our testbench systems are normally equipped with large amounts of RAM, but in reality only 16-32GB is needed for the vast majority of work in Revit and similar applications.

We performed our testing using the terrific RFO Benchmark. As of the time of testing, this benchmark only supported Revit 2015 – 2017, which is why the testing was done on the latest version of 2017 rather than the recently-released 2018. When the benchmark is updated we plan to do additional testing and publish another article to see if anything has changed.

Within the RFO Benchmark, the results are broken down into a few categories:

  • Update (converting a file from a previous version to the 2017 format)
  • Model Creation (consisting of several steps involved in creating a new model)
  • Export (converting or printing the resulting model views to various formats)
  • Render
  • Graphics (refreshing and rotating views)

We used the Standard version of the benchmark, which performs three runs of the tests and then averages the results. The results are presented below using percentage based comparisons to the Intel Core i7 7700K as a baseline.

Benchmark Results

As mentioned, the RFO Benchmark breaks down results into several categories. Some of these consist of many steps, so to provide an overview the results from those sections were totaled and are noted as such in the chart below. If you are curious, the individual steps can also been seen in additional charts below the main overview.

Revit 2017.2 RFO Benchmark

Model Creation

Export

Graphics

As expected, the high clock speed of the Core i7 7700K took the crown across all categories except rendering. This fits with what we have seen in other lightly threaded applications, both those focused on engineering and programs more often used in content creation. Adding cores does not help with this workload, and instead the performance drops because of lower per-core clock speeds. The amount of performance loss varies between about 15 and 25%, with updating a file being the most hard-hit.

However, in the rendering results we see the opposite. More cores is extremely helpful here, with more than a 60% average improvement with a Core i7 6950X 10-core chip. It isn't perfect scaling, but if rendering is something you find yourself waiting on more than general modeling tasks then investing in a more powerful (and expensive) CPU may well be worthwhile.

Hyperthreading

In addition to comparing CPUs directly, we wanted to investigate how much impact Hyperthreading has on Revit performance. This is a feature that has been standard on Intel's Core i7 processors for years, and is also found in some other product lines. It works by duplicating part of the hardware inside each core, effectively allowing the CPU to be working on one thread while keeping another ready to go as soon as the first is finished (or hits a pause). To the operating system, this causes twice as many cores to be reported as there are actually present in the CPU, so that the OS and applications can assign more threads and utilize the feature.

Unfortunately, there are some programs where this actually hurts performance more than it helps – most notably, situations where threads continue for long periods of time without interruption. In that case, having a thread assigned out to a CPU that isn't able to work on it for a long time can cause problems – as can forcibly interrupting the first thread on a given core so that the second can get some attention.

Because of this potential for trouble, testing a single processor with Hyperthreading both on (as usual) and off is helpful. In this case we used the CPU that is fastest for most Revit tasks: the Intel Core i7 7700K. Hyperthreading is easily disabled in the BIOS of most motherboards, and without changing any other settings we can get a direct head-to-head performance comparison.

As with the previous charts, we created an overview of the results from each section of the RFO Benchmark and noted when sections are totaled. If you are curious, the individual results can also been seen in additional charts below the main one.

Revit 2017.2 RFO Benchmark Hyperthreading

Model Creation

Export

Graphics

It is clear from the charts above that having Hyperthreading enabled improves performance across the board in Revit. While the impact on modeling and graphics is minimal, the big rendering boost makes sense. That type of workload is well threaded, and very good at utilizing multiple CPU cores as we saw in the earlier results. Because of the huge 30% difference there, we would recommend sticking with a Core i7 rather than a Core i5 (or other processor lacking Hyperthreading) unless you are on a very limited budget.

Conclusion

This chart sums up the CPU situation in Revit:

Revit 2017.2 RFO Benchmark Summary

For most of the Revit workflow, clock speed is the key metric – while for rendering the CPU core count is a bigger factor (though of course clock speed still plays a role). This means that, for most Revit users, the Core i7 7700K is the way to go. Its high 4.2GHz base clock speed with Turbo Boost of up to 4.5GHz gives it a 15% lead in modeling and graphics over the higher core count models.

If rendering is a bigger part of your workload, it is worth considering whether an 8+ core count processor will fit in your budget. As of the time of this publication, the top six-core option from Intel isn't really worth it: the gain in rendering is small (7% or so) making the additional cost unpalatable. With the eight-core i7 6900X there is a 36% improvement in rendering, though, and with the ten-core i7 6950X that goes up to 62%. Both of those are ideal for render-heavy workloads, but there is a trade-off with higher core count CPUs in the form of reduced modeling performance. Interestingly the 6-10 core processors all perform about the same in modeling and graphics, likely due to them sharing a single-core Turbo Boost speed of 4GHz.

Because of this split between rendering and modeling behavior, there is not single system that will be the best for all Revit use cases. That is why we have created two recommended workstations for Revit: one for general modeling & design and one with an emphasis on rendering performance.

CTA Image
Revit Workstations

Puget Systems offers a range of powerful and reliable systems that are tailor-made for your unique workflow.

Configure a System!
CTA Image
Labs Consultation Service

Our Labs team is available to provide in-depth hardware recommendations based on your workflow.

Find Out More!
Tags: Autodesk, CPU, Hyperthreading, Processor, Revit

Who is Puget Systems?

Puget Systems builds custom workstations, servers and storage solutions tailored for your work.

We provide:

Extensive performance testing
making you more productive and giving better value for your money

Reliable computers
with fewer crashes means more time working & less time waiting

Support that understands
your complex workflows and can get you back up & running ASAP

A proven track record
as shown by our case studies and customer testimonials

Get Started

Browse Systems

Puget Systems Mobile Laptop Workstation Icon

Mobile

Puget Systems Tower Workstation Icon

Workstations

Puget Systems Rackmount Workstation Icon

Rackstations

Puget Systems Rackmount Server Icon

Servers

Puget Systems Rackmount Storage Icon

Storage

Latest Articles

  • LLM Inference – Professional GPU performance
  • LLM Inference – Consumer GPU performance
  • AMD Ryzen 9000: Performance vs Previous Generations
  • AMD Ryzen 9000 Content Creation Review
  • DaVinci Resolve Studio: AMD Ryzen 9000 Series vs Intel Core 14th Gen
View All

Post navigation

 Premiere Pro CC 2017 NVIDIA Quadro (Pascal) PerformancePremiere Pro CC 2017.1.2 CPU Comparison: Skylake-X, Kaby Lake-X, Broadwell-E, Kaby Lake, Ryzen 7 
Puget Systems Logo
Build Your Own PC Site Map FAQ
facebook instagram linkedin rss twitter youtube

Optimized Solutions

  • Adobe Premiere
  • Adobe Photoshop
  • Solidworks
  • Autodesk AutoCAD
  • Machine Learning

Workstations

  • Content Creation
  • Engineering
  • Scientific PCs
  • More

Support

  • Online Guides
  • Request Support
  • Remote Help

Publications

  • All News
  • Puget Blog
  • HPC Blog
  • Hardware Articles
  • Case Studies

Policies

  • Warranty & Return
  • Terms and Conditions
  • Privacy Policy
  • Delivery Times
  • Accessibility

About Us

  • Testimonials
  • Careers
  • About Us
  • Contact Us

© Copyright 2024 - Puget Systems, All Rights Reserved.